
White Paper

Coveo Platform
Implementation Guide

https://www.coveo.com/en

Contents

	A Introduction

	A What Is Coveo?
Project steps

Coveo architecture

	A Getting Started
Working with a team

	A Indexing Content
Push sources vs Pull sources

Refreshing content

Body indexing

Mappings and fields

Field options

Permissions and securities

Indexing pipeline extension

	A Building a Search Page
Understanding search hubs

Understanding the query

Creating a test search page

Understanding the JavaScript
Search Framework

Initializing the framework
Search tokens

Styling

Result templates

Creating a global search box

Leveraging events

Creating custom components

Localization

Adding recommendations

	A Improving Relevance
Machine learning models

Machine learning basics
Query suggestions
Automatic Relevance Tuning (ART)
Dynamic Navigation Experience
(DNE)

Understanding Query Pipeline

Query Pipeline Rules
Machine learning
Thesaurus
Result Ranking
Triggers
Filters
Other

A/B Testing

	A Common Pitfalls
Search as you type

Wildcard search

Too many rules

Sending the right analytics

Using Coveo outside
of relevance

	A Going to Production —
Checklist
Indexing

Permissions

Search page

Machine learning and pipelines

White Paper | Coveo Platform Implementation Guide

https://www.coveo.com/en

Introduction
Coveo is a highly scalable, highly extensible,
cloud-based search, recommendations, and
personalization platform. It uses robust machine
learning technologies to provide the most relevant
experiences possible to virtually unlimited use cases.

This document is intended for anyone planning to use
Coveo to power their search experiences. It guides you
through the major steps and design questions required
when developing with Coveo.

This guide does not intend to replace the product
documentation, but share best practices for a
successful implementation. For a step-by-step learning
experience, see the Level Up platform.

White Paper | Coveo Platform Implementation Guide

https://docs.coveo.com/en/2648/coveo-solutions/coveo-cloud-project-guide
https://docs.coveo.com/en/2648/coveo-solutions/coveo-cloud-project-guide
https://levelup.coveo.com/welcome
https://www.coveo.com/en

What Is Coveo?
Coveo is a relevance platform that enables relevant experiences through
machine learning-powered search and recommendations.

Coveo offers solutions for four main use cases:

1.	 Commerce: Increase revenue by showing
people what they need during their
shopping experience

2.	Website: Improve user interaction and
satisfaction by providing a unified hub of
information for external visitors

3.	Workplace: Increase employee proficiency
and efficiency — and reduce operating costs —
by allowing workers to get to internal resources
they need more quickly

4.	Service: Enable customer self-service and
streamline service agent proficiency by efficiently
resolving and closing support cases

No matter which solution you choose, Coveo
functions with the same general principles:

•	 Indexing the right content in your Coveo index

•	 Making a search experience to present
that content

•	 Improving the relevance of your experience
by enabling machine learning and adding
business rules

•	 Continuously improve the experience by
observing user behavior and making informed
business decisions based on it

Project steps
At its core, Coveo
projects work in these
three main phases.
This project guide
will help you through
those steps in order.

1.	 Indexing the
appropriate
content with the
right metadata
in Coveo

2.	Creating the
search experience
to query that data

3.	Tuning the
relevance by
adding features
to enhance the
relevance of your
search experiences

White Paper | Coveo Platform Implementation Guide

https://www.coveo.com/en

Coveo architecture

The Coveo architecture can be summarized as such:

1.	 Coveo integrates content from many different
sources using its connectors, and consolidates
the information in a single, unified index that lives
in your Coveo organization (instance).

2.	A query into a search box (either standalone
or from a Coveo integration) performs a call to
Coveo, typically after an end-user interaction.

3.	In parallel, a second call is made to Coveo Usage
Analytics, indicating an end-user performed a
search. This data is then fed to Coveo Machine
Learning, to understand which queries and results
are useful for end users.

4.	The query goes through a query pipeline in
Coveo Cloud.

5.	The query pipeline modifies the query according
to business rules and machine learning.

6.	The query reaches the index, where Coveo
determines which results should be returned.

7.	 The results go back through the query pipeline,
where additional rules and machine learning can
modify the result order to be more relevant.

8.	The results are returned to the end user.

9.	When a user clicks on a result, a call is made
to Usage Analytics, indicating which results
were successful.

Websites

Index

Business
rules

Machine
learning

Coveo
integrations

Search page

Application

DAM

Sources
of content

Coveo organization

Query
Pipelines

Usage
Analytics

White Paper | Coveo Platform Implementation Guide

https://www.coveo.com/en

Getting Started
The first thing you need when starting with Coveo is a Coveo Cloud instance.
If you are a new Coveo client, you should have been provided with at least
a sandbox and a production organization.

If you did not, please contact your Coveo
representative or the Coveo administrator in
your organization.

Alternatively, you can create a trial organization,
which gives you the Enterprise features of Coveo
for 30 days. For more information, please fill out
this form.

Once you have your Coveo organization, navigate
to the Coveo platform to access it. You can log in
with any of the listed providers. You should always
use that provider when subsequently logging in to
the platform.

The menu on the left contains the major sections
of Coveo.

•	 Content — Add and customize the content
in your index. Everything to help you control,
troubleshoot, and view the content in your index
is part of this section.

•	 Search — Customize the search experience
once the content is indexed. This is where you can
add business rules such as synonyms or ranking
rules, and where you can start to play with the
Coveo JavaScript Search Framework to create
search pages.

•	 Machine learning — Create and test Coveo
Machine Learning models.

•	 Analytics — Report on how your users are
interacting with your search interfaces.

•	 Organization — Manage the inner workings
of your Coveo organization. For example,
this is where you go to add members to your
organization to help you with the development.

White Paper | Coveo Platform Implementation Guide

https://www.coveo.com/en/get-started
https://platform.cloud.coveo.com/login
https://www.coveo.com/en

Working with a team
Typically, as a Coveo customer, you get access
to one production organization, and one or
two non-production organizations, depending
on the license type.

When working with a large team during
development, you might want to consider using
multiple individual test organizations — and
migrating your changes to a shared non-production
organization. This ensures that the changes that one
developer makes to their environment don’t get
overwritten by another developer.

Coveo recommends this approach for
active development. Pro Tip

You can control access to any invited
members to your organizations. For
example, you can invite a member that
can only view the analytics reports, or a
member that can only edit specific sources.

For more information, see Manage Groups.

White Paper | Coveo Platform Implementation Guide

https://docs.coveo.com/en/1980/manage-an-organization/manage-groups
https://www.coveo.com/en

Indexing Content
For Coveo to provide relevant content, that content needs to first exist in
your Coveo index. To get content into your Coveo index, Coveo provides a list
of available sources, such as Sitemap, SharePoint, or Salesforce. You can find
the list of available sources in the Connector Directory.
Coveo can index any type of content into your index, even if there is no native
Coveo connector for it. The exact method of indexing depends on the content
you are indexing.

Push sources vs Pull sources
While Coveo offers many sources, they all work in
one of two ways: either as Push sources, or as Pull
sources. The difference between both is which side
initiates the indexing process.

With Push sources, Coveo opens an API where
you can send (or push) your items to be indexed.
Push sources are typically simple on the Coveo
end — since most of the complexity is in the code
that performs the push.

There are currently only three Push sources: Sitecore
(controlled by Coveo for Sitecore, which is installed
on your Sitecore server), the Push API source, and all
sources controlled by the Crawling Module, which
is a piece of Coveo software that can be installed on
your servers to push content from behind a firewall.

With Pull sources, you tell Coveo which page or
endpoint needs to be accessed, and the frequency
at which you want Coveo to visit those pages or
endpoints. The vast majority of Coveo’s sources use
the pull mechanism.

White Paper | Coveo Platform Implementation Guide

https://docs.coveo.com/en/1702/index-content/connector-directory
https://www.coveo.com/en

With these in mind, Coveo has several best practices
when it comes to choosing which source to use
when indexing Coveo content. Please follow these
suggestions in order.

Note: there might be some exceptions to this.
For example, if you need absolute control over all
of your content and can’t rely on an additional

REST endpoint, you might want to simply leverage
the Push API directly. When in doubt, please contact
a Coveo representative or ask your question on the
Coveo Community to discuss the requirements and
look at available options.

Indexing method Push Pull

Description Something external to Coveo pushes content
to a Coveo endpoint

On a specific schedule, Coveo calls an endpoint
to index content

Example sources Sitecore, Push API Web, Salesforce

Generic source Push API Generic REST API

Advantages • You have full control over the content being indexed
• You can update the content in Coveo as soon

as it changes in the original source

• Coveo is in charge of the infrastructure and
the scheduling

• Configuration is all in one place

Disadvantages • You need to control when content should be pushed
• You typically have an extra piece of software to maintain
• Typically takes more development time to configure

• Since the source refresh happens on a schedule,
your content typically needs at least a few minutes
before it gets updated

YES YES YES YES

Am I indexing a DAM
for a commerce

use case?

Is the content
available from a
REST endpoint?

Is there a dedicated
Coveo source?

Is the content available
from a website?

Use the Push API Use the
dedicated source

Use the
Generic REST

API source
Use the Push API

Use the
Sitemap source

Use the
Web source

NO NO NO NO

YES NO

Is there a Sitemap
available for
the website?

Indexing table

White Paper | Coveo Platform Implementation Guide

https://connect.coveo.com/s/
https://www.coveo.com/en

Refreshing content
This section only applies if you are using a Pull
type of source. For Push sources, the mechanisms
are different.

When using a source with a Pull mechanism, you
can edit the schedule and the frequency at which
Coveo updates the content.

Coveo offers three ways of updating content for
pull sources: Refresh, Rescan, and Rebuild. Not all
options are available for all sources.

You can find more information about the different
options here: Refresh VS Rescan VS Rebuild.

For the sake of a project, you typically need to
know the frequency at which the content needs
to be updated, and adapt it to your needs.

Body indexing
A Coveo item normally has a body — a
representation of what the item’s actual content is.
It normally holds only text, and is the core content
of an item. Everything that is indexed in the body
of an item is searchable in Coveo.

When indexing a web page, you typically want
to ignore the header and footer of the pages you
index. Otherwise, content in those areas (e.g., the
copyright notice in the footer, or the text from the
header menu) would become searchable, making
relevant content harder to find.

The exact way of removing these sections differs
depending on your source type, but include using
Web Scraping (Web and Sitemap source) or
having BEGIN NOINDEX tags (Sitecore). It’s also
possible to remove parts of the item in an indexing
pipeline extension.

Good search starts with good content — make
sure your content is clean in Coveo to get the
best relevance.

Pro Tip
Make sure you leave enough time between
each rebuild so that Coveo can finish the
first rebuild before starting the second.

White Paper | Coveo Platform Implementation Guide

https://docs.coveo.com/en/2039/index-content/refresh-vs-rescan-vs-rebuild
https://docs.coveo.com/en/1874/index-content/web-scraping-configuration
https://docs.coveo.com/en/2326/coveo-for-sitecore-v5/index-page-content-with-the-fetchpagecontentprocessor
https://docs.coveo.com/en/1556/index-content/indexing-pipeline-extension-overview
https://docs.coveo.com/en/1556/index-content/indexing-pipeline-extension-overview
https://www.coveo.com/en

Mappings and fields
A Coveo item stored in your index contains
metadata. This metadata is linked to fields, and
becomes what we call a “field value.” But how
does metadata get added to fields? This is where
mapping rules come in.

On your sources, you can set mapping rules that
tell Coveo that a specific metadata on an item
should be added (or mapped) as the field value
for a specific field.

Upon source creation, a lot of mapping rules usually
already exist for more generic metadata. When you
have more metadata you want to index, you need to
add additional metadata rules.

Mapping rules are source-specific and are added
in the source configuration. Fields, however, are
shared across the organization, for all sources. It is
thus possible to have mapping rules from different
sources all mapping metadata to the same field,
despite the items not coming from the same source.

Coveo fieldsMapping rulesOriginal document

Coveo source

author:
“Alex Moreau”

workcompany:
“Coveo”

publisheddate:
2020/05/03

Indexed document

Coveo index

Author: Alex Moreau

Company: Coveo

Publish date:
May 3rd 2020

Author >
author

 Company >
workcompany

 Publish date >
publisheddate

author:
string,

facettable

workcompany:
string,

facettable

publisheddate:
date,

sortable

Coveo organization

White Paper | Coveo Platform Implementation Guide

https://www.coveo.com/en

Field options
Fields dictate how metadata should be stored
and used.

Fields can be of several different types, related
to the programming types: strings (text), integers
or decimal (numbers), or dates.

Fields also have options that you can change.
The most important field options are:

•	 Facet — Lets you use the field for facet filters.

•	 Multi-value facet — Treats all values separated
by semicolons as individual values, as opposed
to one long string.

•	 Sort — Lets you use the field for sorting results.
With string fields, sorting is alphabetical.

•	 Free-text search — Lets Coveo know that users
should be able to search for content inside of that
field, and return the result even if those words are
not inside of the body of the document.

Permissions and securities
Documents can hold sets of permissions, ensuring
only people who can access content can see them
in search results.

While this is not necessarily needed in website or
commerce use cases, it is essential in workplace and
service contexts.

Coveo uses what is called early binding. We make the
request to the index with the permissions, returning
only results that a user has access to. This is contrary
to late binding, which filters out content the user
doesn’t have access to after making the query. Early
binding ensures more relevant results and, in the case
of Coveo, a faster and more consistent experience.

Permissions are set at the item level when indexing,
and are set on the search token when querying.

When you are indexing content from one of the
dedicated source connectors, you typically don’t
have to worry about additional configuration to get
permissions; a Salesforce source will natively get the
permissions from Salesforce and apply them on each
item, as would a SharePoint source for SharePoint
content, etc. However, for generic sources that
include permissions (such as when using the Generic
REST API or the Push API), you will need to ensure that
the right permissions are added to the indexed items.
Additionally, you will need to remember to add a
security cache, and push your security model there.

Pro Tip
While it can be tempting to set all of
these options to true on all fields, doing
so will impede overall performance, and
can yield unsatisfactory relevance. It is
better to enable those options only for
the appropriate fields.

White Paper | Coveo Platform Implementation Guide

https://docs.coveo.com/en/1719/index-content/coveo-cloud-management-of-security-identities-and-item-permissions
https://www.coveo.com/en

Indexing pipeline extension
The content you index is rarely perfectly formatted
with consistent metadata values across different
source types. To get the most out of your Coveo
implementation, you need consistent values in your
fields with well-indexed content.

Indexing pipeline extensions (IPEs) can help you
bridge that gap. IPEs are Python scripts you can write
to modify or reject an item at indexing time.

IPEs can read and modify the body and fields of a
document, create new fields, or change permissions.
For example, you can call external APIs in your IPE
to augment your metadata.

Note: IPEs can only run for a maximum of
five seconds; make sure you don’t call too many
slow APIs.

IPEs can be used to exclude content from the
body of the document (pre-conversion) or to add
metadata (post-conversion).

For more information on IPEs, including code
examples, see Indexing Pipeline Extension
Overview.

Coveo’s permissions can be individual (user-level)
or group-based. For example, you could say
that a document can only be accessed by
jlpicard@example.com, or you could say that
anyone in the group SALES can access a given
document. The same applies to denied permissions.

Depending on your method of indexing, the exact
way to add permissions can differ.

Coveo
organization

Confidential
document

Index

Viewable by:
Sales

Security provider

Search page

Search token:
User=jlpicard @ example.com

Sales:
jlpicard @ example.com
nuhura @ example.com

Confidential
document

Viewable by:
Sales

White Paper | Coveo Platform Implementation Guide

https://www.coveo.com/en

Building a Search Page
Once your content is available in your index with the proper metadata,
it’s time to decide how you’re going to query that content.

Coveo offers multiple alternatives to help you build
search pages:

•	 Full Coveo Integrations — These integrations
are built by Coveo, and offer a more intuitive
and better integrated experience with your
system of choice. Those solutions include
Coveo for Sitecore, Coveo for Salesforce,
Coveo for ServiceNow, and Coveo for Adobe
Experience Manager.

	 This option is almost always the best
solution when integrating Coveo with its
appropriate system.

•	 Coveo JavaScript Search Framework —
This framework is built and maintained by Coveo.
It allows you to quickly build a search experience
using simple HTML tags to load an assortment
of components like a search bar, search results,
facets, and much more.

	 This option is typically the best approach when
integrating Coveo on a website or in a system
that supports your typical web technologies
(i.e., HTML, JavaScript, and CSS).

•	 Coveo Headless — This redux-based toolset
allows you to integrate Coveo in already existing
JavaScript frameworks, such as React or Angular.js.
It should be considered mostly if your website or
application is already running such a framework.

	 This option is typically preferred when your
site heavily relies on a JavaScript framework and
you want the Coveo integration to follow the
same practices.

•	 Coveo Hosted Services — These include
the Hosted Search Page and the In-Product
Experience integrations. They leave the
management of the design of the search page
on the Coveo side, loading the appropriate
JavaScript and HTML typically through a client call.

	 This option is typically preferred if you would like
to have everything managed from the Coveo
Administration Console directly.

White Paper | Coveo Platform Implementation Guide

https://www.coveo.com/en

•	 Coveo API calls — The last option is to call the
Coveo Search API directly. With this option, you
have full control over what is being sent to Coveo,
and how you want to display the information.
However, it comes at the cost of additional
development time and effort.

	 This option is preferred in very complex front-end
pages or apps, or when using Coveo in a mobile
or non-web based application.

Depending on your project, you can opt for any
of those options.

The majority of the time, using the JavaScript
Search Framework is the preferred method, as
it offers a lot of power and flexibility while staying
easy to implement.

This project guide focuses on using the JavaScript
Search Framework. If you are looking to use a
different method of implementation, please see
the following links:

•	 Coveo for Sitecore

•	 Coveo for Salesforce

•	 Coveo for ServiceNow

•	 Coveo Headless

•	 Direct Search API

Coveo
Hosted Services

JavaScript
Search

Framework

Coveo
Headless

Coveo
REST APIs

Simplicity of implementation Full control of all components

Pro Tip
A new framework called Coveo Atomic
based on Coveo Headless came out
not long before this project guide. While
this guide does not cover its use, its
complexity and control is comparable
to the JavaScript Search Framework.

For more information on Atomic, see
Use the Coveo Atomic Library.

White Paper | Coveo Platform Implementation Guide

https://docs.coveo.com/en/2224/coveo-for-sitecore-v5/coveo-for-sitecore-project-guide
https://docs.coveo.com/en/1158/coveo-for-salesforce/getting-started-with-coveo-for-salesforce
https://docs.coveo.com/en/2871/coveo-for-servicenow/coveo-for-servicenow-deployment-guide
https://docs.coveo.com/en/headless/0.1.0/
https://docs.coveo.com/en/1370/build-a-search-ui/use-the-apis-to-build-a-search-ui
https://docs.coveo.com/en/atomic/latest/
https://www.coveo.com/en

Understanding search hubs
No matter the solution you choose to search
content, there is an important concept to
understand: search hubs.

Search hubs are the way Coveo knows which
search interface your queries are coming from.
Search hubs should be human-readable values,
and can contain spaces. Ideally, it should be
prefixed by the website or brand name, followed
by the purpose of the search page. For example,
“ACME Search” and “ACME News” are perfect
search hub names.

While they are used by Coveo Machine Learning,
they are also used by analysts looking at the
analytics in your organization to determine how
users are leveraging search, hence the need for
human-readable values.

Most of the time, each search page should have
its own unique search hub. Setting the search hub
is done at different places, depending on your
method of implementation:

•	 For Coveo integrations, please refer to their
appropriate documentation.

•	 For the JavaScript Search Framework, the
search hub value is set on the CoveoAnalytics
component.

•	 For Coveo Headless, the search hub value is set
in the engine properties, in the search object.

•	 For Coveo Hosted Services, the search hub will by
default be the name of your page or component.

•	 For Search API, the search hub is a parameter on
the search request (searchHub).

Understanding the query
When a query is sent to Coveo, many parameters
can affect what content is returned, acting as filters.

The following parameters are the ones most likely
to affect which content is returned. They all follow
the Coveo Query Syntax:

•	 q — The q (query) parameter is the query the
user entered. It should always be only what the
user has typed.

•	 cq — The cq (constant query) parameter adds
an expression for filtering content. It should be
used for filters that do not change on a page
(e.g., a people search page will only ever search
for people, so the filter should be in the cq).

•	 aq — The aq (advanced query) parameter adds
expression for filtering on content. It should be
used for filters the end user added (e.g., when
a user selects a value from a facet, an expression
to filter the content is added to the aq).

The difference between the aq and the cq is a matter
of performance optimization, as well as query execution.

White Paper | Coveo Platform Implementation Guide

https://coveo.github.io/search-ui/components/analytics.html
https://docs.coveo.com/en/headless/latest/reference/actions/search-hub/
https://docs.coveo.com/en/1552/searching-with-coveo/coveo-query-syntax
https://www.coveo.com/en

•	 dq — The dq (disjunction query) parameter adds
an “OR” expression to the query. In other words,
for a result to be returned, it must fit the filters of
q and aq added together, or only match the dq.
This parameter is typically not used as much as
the other ones.

•	 lq — The lq (long query) parameter should be
used when you are sending a lot of text for the
query (e.g., a case description). It uses machine
learning to determine which words are more
important, and uses those terms to perform
a query. To use lq, you must enable the ITD
option on the ART machine learning model in
the appropriate pipeline, in the Coveo
Administration Console.

In the end, the query filters would look like this:

((q AND lq AND aq) OR dq) AND cq

Those filters are typically added in three places:

1.	 On the request itself, as part of the parameters.

2.	In the search token, where a “filters” section can
add non-removable filters.

3.	In the query pipeline, in the filters section.

Creating a test search page
The best and easiest way to create a quick search
page with Coveo is to leverage the Hosted
Search Page service offered in your Coveo Cloud
organization.

Hosted search pages use the Coveo JavaScript
Search Framework to create search pages, and
include a tool called the Interface Editor. This tool
is a drag-and-drop UI that allows you to create
search pages easily and intuitively.

Once you have built a page to your liking, you can
switch to the “Code View” to see the HTML markup
of your page.

Note: Search pages in a “Trial” organization work
differently. To get the experience described in
this guide, you would need to create a “Classic”
search page.

White Paper | Coveo Platform Implementation Guide

https://docs.coveo.com/en/3410/tune-relevance/manage-filter-rules
https://docs.coveo.com/en/1656/build-a-search-ui/manage-hosted-search-pages
https://docs.coveo.com/en/1656/build-a-search-ui/manage-hosted-search-pages
https://www.coveo.com/en

Understanding the JavaScript
Search Framework
The JavaScript Search Framework is an open source
framework built and maintained by Coveo that
allows you to create full-featured search pages with
simple HTML tags.

At its core, the framework offers a variety of
components that, when initialized, render either
visual controls that end users can use to navigate
through the content, or configuration changes to
alter a request.

The Search Interface component is the most
important component of the framework. The
Search Interface is essentially the container for
the framework; it is the interface that is initialized
on page load, and only the components inside
the interface are rendered by the framework.

Components almost always have options to modify
the way they behave. Those options are added as
data attributes to the HTML tags.

Initializing the framework
Initializing the framework is fairly simple. You need:

•	 A Coveo Search Interface, ideally with a unique
ID attribute

•	 A Coveo Cloud organization

•	 Either an API key to search, or a search token
retrieval mechanism

To learn more about how to initialize the framework,
see JavaScript Search Framework Endpoints.

Search tokens
With Coveo, you can either query for content using
an API key or a search token.

Using an API key is the simplest way to do it; you
simply go into your Coveo organization and create
a key with limited permissions. However, this
method does not allow you to query for secured
content, and you cannot enforce filters to always be
applied, meaning that anyone with that key could
query any anonymous content in your organization,
even if that content is not normally surfaced on your
search page.

To avoid this, you can use a search token. Search
tokens are Coveo’s way of adding securities and
enforcing parameters when someone is querying.

White Paper | Coveo Platform Implementation Guide

https://github.com/coveo/search-ui
https://github.com/coveo/search-ui
https://coveo.github.io/search-ui/components/searchinterface.html
https://docs.coveo.com/en/331/javascript-search-framework/javascript-search-framework-endpoints
https://www.coveo.com/en

In order to generate a search token, you need to set
up an endpoint that acts as a middleman between
the client and Coveo. This endpoint should be able
to fetch the permissions of the user requesting it,
and then make a request to Coveo, returning the
token with the appropriate permissions.

For more information on this topic, see Search
Token Authentication.

Styling
Styling components with Coveo follows the
typical CSS best practices. There is no special way
of styling components.

The best practice is to add an additional class
to your CoveoSearchInterface, so that overriding
the style can easily be done.

You should always load the default styling from
Coveo. Not doing so may lead to weird styling
issues, such as ARIA landmarks being visible on the
screen instead of being limited to screen readers.

For more information, see Styling the Coveo
JavaScript Search Framework.

Month

September

March

October

June

April

Search

3,320

1,218

431

72

18

MONTH

SEPTEMBER

MARCH

OCTOBER

JUNE

APRIL

SEARCH

MONTH

September

March

October

June

April

Search

3,320

1,218

431

72

18

MONTH

SEPTEMBER

MARCH

OCTOBER

JUNE

Facet styling overriding examples

White Paper | Coveo Platform Implementation Guide

https://docs.coveo.com/en/56/build-a-search-ui/search-token-authentication
https://docs.coveo.com/en/56/build-a-search-ui/search-token-authentication
https://docs.coveo.com/en/423/javascript-search-framework/styling-the-coveo-javascript-search-framework
https://docs.coveo.com/en/423/javascript-search-framework/styling-the-coveo-javascript-search-framework
https://www.coveo.com/en

Result templates
Result templates dictate how results should be
displayed on the page.

Result templates have conditions on them, which
are evaluated for each result when rendering them
in a search interface. For example, you can have
a template that is used only when the result is a
PDF file.

Templates can be customized to look however you
want, and include their own components to display
images, field values, or perform specific actions.

Result templates should always include the
CoveoResultLink class on all elements that, when
clicked, opens the document; this component takes
care of sending the click events to Coveo.

Result template
example with
out-of-the-box
components

Creating a global search box
A global search box is a Coveo-powered search box
that sits in the header of your website or application
and provides suggestions of queries to users as they
type, before redirecting them to a full search page
when a query is entered or selected.

A basic global search box includes two main
components: a CoveoSearchbox component, and
a CoveoAnalytics component. The sole purpose
of the CoveoAnalytics component is to add a search
hub value to the query suggestion calls. The search
hub value should be the same as the search hub value
of the page it redirects to, to ensure that all query
suggestions proposed to end users have results.

For more information on how to add a global search
box, see Create a Standalone Search Box.

Leveraging events
The Coveo JavaScript Search Framework comes
with many JavaScript events, which you can
leverage to modify aspects of the implementation.

Hooking yourself on those events allow you to
add code or logic before or after the initialization
of Coveo on the page, or to modify a query,
analytics, or query suggest call before it is sent to
Coveo, or just as it comes back before it renders
on the page. This typically allows you to add
behavior customization without creating entirely
new components.

VERTUS

Vertus 6 12" Floor
Standing Speaker
Helix’s Vertus �oor-standing speaker
features sound array technology for
room-�lling sound...

$600

White Paper | Coveo Platform Implementation Guide

https://docs.coveo.com/en/413/javascript-search-framework/javascript-search-framework-result-templates
https://coveo.github.io/search-ui/components/resultlink.html
https://docs.coveo.com/en/294/javascript-search-framework/create-a-standalone-search-box
https://docs.coveo.com/en/417/javascript-search-framework/javascript-search-framework-events
https://www.coveo.com/en

Creating custom components
Leveraging Coveo events is sometimes not enough,
and you want a new component with a behavior
that does not exist in the Coveo JavaScript
Search Framework.

A good example for needing a custom component
is if you would like to reuse the new functionality
in multiple places with different options, or when
you think the behavior you want can be used in
other projects.

Localization
By default, the Coveo JavaScript Search Framework
is in English. However, the framework supports
many other languages, with out-of-the-box
translations for its out-of-the-box components.

To translate your search interface in another
language, simply load the appropriate culture file.
This translates all the out-of-the-box Coveo strings.
However, your facet and field values are typically not
automatically translated. In this scenario, you need
to add those strings to a translation dictionary.

Adding recommendations
Coveo Recommendations are a special breed of
search. Instead of showing users content based on
their query or on what is popular, recommendations
show users content they could be interested in
based on what other people have viewed or
interacted with.

Pro Tip
Coveo already offers a few examples
of custom components with Coveo Turbo,
as well as a framework to create new
components. You are encouraged to
use the same recipe when creating your
own components.

White Paper | Coveo Platform Implementation Guide

https://docs.coveo.com/en/421/javascript-search-framework/change-the-language-of-your-search-interface
https://coveo-turbo.github.io
https://www.coveo.com/en

There are two different types of
recommendations: Product Recommendations
and Content Recommendations.

•	 Product Recommendations should be used
in commerce scenarios, typically when you want
to use more than just page views to evaluate a
recommendation, such as items added to cart,
purchased items, and viewed items.

•	 Content Recommendations considers mostly
page views as analytics data to work from, and is
ideal for recommending reading material, such as
documentation pages, knowledge articles, blog
posts, news items, or product detail pages.

Recommendations work in the same four steps:

1.	 Track your page view and potential other events,
sending them to Coveo Analytics.

2.	Add the appropriate machine learning model
to your Coveo organization.

3.	Create a dedicated query pipeline for your
recommendations, associating your machine
learning model to it.

4.	Add the Recommendations component from
the JavaScript library to your site, setting the
appropriate search hub to go through the right
query pipeline.

There are specific things to keep in mind,
depending on your use case and on the model
you’re using. For more information, refer to the
appropriate Coveo documentation on the subject.

White Paper | Coveo Platform Implementation Guide

https://docs.coveo.com/en/3382/coveo-for-commerce/leverage-coveo-machine-learning-product-recommendations-pr
https://docs.coveo.com/en/3387/leverage-machine-learning/about-content-recommendations-cr
https://www.coveo.com/en

Improving Relevance
Once you have content in your index and a search page to query it,
you should work to improve relevance. The most powerful tool in the
Coveo toolbox for this is machine learning.

Machine learning models
Coveo offers multiple machine learning models, and
is continually developing and releasing new ones.

The two most important models to improve
relevance are Query Suggestions and Automatic
Relevance Tuning (ART).

Machine learning basics
At its core, all Coveo Machine Learning models work
from the same loop: the more user analytics data you
get, the smarter and more accurate Coveo Machine
Learning becomes.

For most models, the required events are searches
and clicks. Searches tell Coveo what people have
searched for and how they’ve searched for it, while
clicks tell Coveo which searches were successful,
and how successful they were.

Coveo separates learnings according to three
main criteria: language, search hub, and tab. Those
criteria act as hard separation; learning from one
search hub will not be shared with another
search hub.

You can also send custom contexts to perform
“soft” separation of learnings, where the models
learn from all events but weigh similar contexts
together.

Query Suggestions
The purpose of Query Suggestions is to propose
queries to your users. The model presents queries
that other people have done that were successful.
In order for a query to be successful, it needs to
have led to a click.

Query Suggestions is typo-resistant based on
a confidence rating. The more a query is common,
the more it’s likely to be suggested, even if it’s
horribly misspelled.

Query Suggestions is not aware of the type
of content that was clicked, only that someone
searched for a term and that this term yielded at
least one result that the user clicked on.

White Paper | Coveo Platform Implementation Guide

https://docs.coveo.com/en/3386/leverage-machine-learning/about-query-suggestions-qs
https://docs.coveo.com/en/3384/leverage-machine-learning/about-automatic-relevance-tuning-art
https://docs.coveo.com/en/3384/leverage-machine-learning/about-automatic-relevance-tuning-art
https://docs.coveo.com/en/2081/leverage-machine-learning/custom-context
https://www.coveo.com/en

Automatic Relevance Tuning (ART)
The ART model is at the core of improving relevance
at Coveo. This model looks at what people search
for and what they click on. If enough people search
for something and click on a particular result, it starts
to boost that result so it shows up higher in the result
list. At scale, this model can ensure that people can
find what they are looking for within the first few
results on the page.

By default, ART boosts up to five results; this can be
adjusted in the settings when associating a model.

ART can also inject results that do not fit the current
user query, but were successful for other people
who made the same query in the past. This helps
reduce the number of queries without results, and
can save valuable time for your end users.

For example, let’s say your user searches for
“apartment insurance.” However, in your index,
there is no such thing as apartment insurance,
those terms not being found together in any of your
documents. What the user is actually searching for
in that case is “home insurance,” a query that returns
a lot of results. The first few users would realize
their mistake, then correct “apartment” to “home.”
ART can pick up on that trend, and start to inject
the result “home insurance” when a user enters
the query “apartment insurance,” since ART is now
confident that people who search for “apartment
insurance” are actually looking for “home insurance.”

Dynamic Navigation Experience (DNE)
Dynamic Navigation Experience is a machine
learning model that handles facet and facet filtering.
It can reorder facets, make them appear/disappear
based on how used they are, reorder the values in
each facet, pre-select values depending on the user
query, or automatically boost categories of results
based on the current query.

DNE is extremely useful and powerful in commerce
use cases and in complex manufacturing. However,
it can be harmful in other scenarios, when people
expect a consistent user experience, such as in
workplace use cases.

White Paper | Coveo Platform Implementation Guide

https://docs.coveo.com/en/l1ca1038/leverage-machine-learning/associate-an-automatic-relevance-tuning-model-with-a-query-pipeline
https://docs.coveo.com/en/3383/leverage-machine-learning/about-dynamic-navigation-experience-dne
https://www.coveo.com/en

Understanding Query Pipeline
Query Pipelines are a feature of Coveo that allows
you to add rules that can change what is being
searched, what is being returned, and the order
in which things are returned.

You can create multiple pipelines and add
conditions to them, so that queries from specific
search pages go through that pipeline.

Any time a query is made to Coveo, it has to go
through a query pipeline. There are three things that
can determine which pipeline a query goes through.

In order:

1.	 A query can contain a pipeline parameter.
If there is a pipeline with the same name as
the value for that parameter, the query will go
through it.

2.	The query evaluates all conditions on the
pipelines, in order, and will go through the first
one whose condition fits. Pipelines without
conditions are skipped at this stage.

3.	The query goes through the pipeline tagged
as “default”.

It is typically recommended to use the second
option. Most of the time, you want to have
conditions based on the search hub.

Query Pipeline rules
Query Pipeline offers you control over the query
being made by the user. Here is a quick overview
of the most important ones.

Machine learning
In order for machine learning to take effect on
a search page, you need to associate the model
to the query pipeline.

You almost always want both a Query Suggestion
and an ART model associated with your pipeline,
except for recommendation pipelines which should
have recommendation models.

Multiple pipelines can share the same machine
learning model; it is in fact encouraged that you do
that in most scenarios.

Thesaurus
Thesaurus rules (also known as synonyms) allow
you to change the terms to either expand or replace
the query that the user has entered.

Thesaurus rules are very useful when dealing
with acronyms, initialisms, hypocorisms, and
other abbreviations.

Thesaurus should not be used for expanding plural
and grammatical expansions. Coveo already stems
words, and will expand “search” with “searches,”
as well as “write” with “writing” and “writer”
for example.

White Paper | Coveo Platform Implementation Guide

https://docs.coveo.com/en/1791/tune-relevance/manage-query-pipelines
https://docs.coveo.com/en/1959/tune-relevance/manage-query-pipeline-conditions
https://docs.coveo.com/en/1461/build-a-search-ui/query-parameters
https://docs.coveo.com/en/2816/leverage-machine-learning/manage-the-coveo-machine-learning-model-associations-with-query-pipelines
https://docs.coveo.com/en/2816/leverage-machine-learning/manage-the-coveo-machine-learning-model-associations-with-query-pipelines
https://docs.coveo.com/en/3405/tune-relevance/manage-thesaurus-rules
https://www.coveo.com/en

Result Ranking
Result Ranking rules allow you to change the
ordering of the results, through either boosting
or burying a specific or a category of results.

There are two types of ranking rules:
Featured Results, and Ranking Expressions.

•	 Featured Results boost specific results so that
they always appear first in the result list when a
specific query is made, or another condition is
met. Featured Results are extremely powerful, and
should be used sparingly. You also want to make
sure that no two featured results rule overlap, as it
could otherwise lead to confusing results.

•	 Ranking Expressions boost a category of
results that fit a specific expression by any
amount of points that you decide. Entering a
negative number is possible and sometimes even
encouraged; negative scores bury results, making
them appear lower in the result list, without quite
making them disappear.

Ranking Expressions should stay between -100 and
100. Anything beyond those limits can start to hinder
machine learning (i.e., ART) from showing the results
people are actually clicking on, leading to a less
successful implementation.

Ranking expressions can refer to parts of the query
using the $ symbol. For example, $query refers
to the user’s query. This way, you can add a rule
to boost specific object types if the user’s query is
exactly the name of one object type, as such:

For the full list of available values, see Query
Pipeline Language (QPL).

Triggers
Triggers are rules that can make something appear
or happen on the search page when a condition
is met.

There are four different types of triggers:
Notify, Query, Execute, and Redirect.

Almost all of the time, you will either use a Notify
or a Redirect trigger.

Notify triggers display a message at the top of the
result list when a condition is met. This can be used
to warn users of an upcoming event, for example,
or to let users know that a thesaurus rule was applied
to modify their query.

@objecttype==$query

White Paper | Coveo Platform Implementation Guide

https://docs.coveo.com/en/3234/tune-relevance/manage-result-ranking-rules
https://docs.coveo.com/en/3376/tune-relevance/manage-featured-result-rules
https://docs.coveo.com/en/3375/tune-relevance/manage-ranking-expression-rules
https://docs.coveo.com/en/1449/tune-relevance/query-pipeline-language-qpl
https://docs.coveo.com/en/1449/tune-relevance/query-pipeline-language-qpl
https://docs.coveo.com/en/1458/tune-relevance/trigger-query-pipeline-feature
https://www.coveo.com/en

Redirect triggers redirect the user to a different URL
when a specific query is entered. For example, you
might want your users to be automatically redirected
to your careers website when they search for “jobs,”
or you might want to redirect users to your support
portal if they enter “help.”

The other two trigger types (Query and Execute) are
typically better handled through thesaurus rules and
front-end JavaScript code, respectively.

Filters
When sending a query, you can set filters, so that
you are only returning a subpart of the full index.
Query Pipelines also allow you to change the filters
of a query, giving you an easy no-code way of
modifying and updating filters.

Other
There are other features of the query pipeline that
may be less used.

Stop Words allow you to add words that will be
completely ignored by the index when querying.
Do note that Coveo already uses Inverse Term
Frequency and already has a long list of ignored
profanities, so adding short frequent words or
profanities might not be useful for relevance.

Ranking Weights change the base relevance of the
index. They have been tuned for document search.
You typically want to change them in Commerce
scenarios, but for website search or for documents
with a decent amount of text in it, leaving the default
parameters should be good.

Query Parameters allow you to change the options
that a query passes. This is a more advanced section,
and should only be tackled by someone who
understands the basics of the Coveo Search API.

A/B testing
It can sometimes be unclear if adding or removing
a query pipeline rule will help your search relevance
or hinder it. For this reason, Coveo has a built-in
A/B testing mechanism.

A/B testing of Coveo allows you to send a
percentage of your traffic in one pipeline, and send
the rest in a second pipeline. Over time, you will
be able to report on the analytics data coming from
your users, and determine which pipeline performed
the best.

Pro Tip
Remember to add the CoveoTriggers
component on your search page if you
want trigger rules to take effect.

White Paper | Coveo Platform Implementation Guide

https://docs.coveo.com/en/1440/tune-relevance/filter-query-pipeline-feature
https://docs.coveo.com/en/1446/tune-relevance/stop-query-pipeline-feature
https://docs.coveo.com/en/1470/tune-relevance/rankingweight-query-pipeline-feature
https://docs.coveo.com/en/1491/tune-relevance/queryparamoverride-query-pipeline-feature
https://docs.coveo.com/en/3255/tune-relevance/manage-a-b-tests
https://coveo.github.io/search-ui/components/triggers.html
https://www.coveo.com/en

Common Pitfalls
The Coveo engine allows you to do many things. However, not all of those
things will yield a good user experience, and can even harm the relevance
of your search. The following pitfalls should be avoided when using Coveo.

Search as you type
Presenting results to users as they are typing
performs one query per keystroke, with results
presenting slower the faster a user types. Instead
of presenting results to the user as they are typing,
Coveo recommends presenting queries (using
Query Suggestions). This practice is aligned with
the best practices of industry leaders — and is the
best way to ensure typo resistance and machine
learning-powered improvements.

Wildcard search
Wildcard is the process by which typing the
beginning of a word will return results for that word
and any other words that start with the same letters.

Searching with wildcards comes at a high price
in terms of performance, taking sometimes up to
50 times longer to return results. Typically, using
Query Suggestions tends to alleviate the need for
wildcard search, as words that would complete
the query are suggested to the end-user in order
of relevance.

Another use case for wildcard search is for allowing
partial SKUs to be searchable in Coveo. However,
a better and faster approach would be to separate
the SKU into its individual parts and index them in
a free-text searchable, multi-value Coveo field.

Too many rules
Query Pipelines give you a lot of control over the
relevance of your search interface. However, relying
too heavily on manual rules can harm machine
learning and prevent it from being able to boost
what users are looking for.

Having too many featured results can be particularly
harmful to search results. Having too many thesaurus
entries (i.e., multiple pages worth of thesaurus
entries) can also start to affect relevance.

In general, when using query pipeline rules, keep
in mind that Coveo is already trying to improve the
search experience, and that the rules you add are
crutches to help Coveo learn.

White Paper | Coveo Platform Implementation Guide

https://source.coveo.com/2021/06/21/partial-sku-search/
https://www.coveo.com/en

Sending the right analytics
For machine learning to work, Coveo needs
both search and click events. Sometimes,
when customizing the result template, the
CoveoResultLink component will be removed
from the default template, replaced by the
CoveoFieldValue component to display a title.

However, removing the CoveoResultLink component
prevents the search page from sending a click event
to Coveo, leading to incomplete tracking, and
preventing machine learning from learning.

Similarly, search and click events require an
OriginLevel1 (search hub) value to let machine
learning learn. This option is set on the
CoveoAnalytics component, but is not always
populated by default. Missing this option will
prevent machine learning from learning.

Using Coveo outside
of relevance
Coveo is a relevance engine, and is best utilized
when the experience you are powering requires
results in a contextualized, relevant order.

While Coveo can be used for simple listing sorted
by date, as an example, relevance should still be
the default option. Also note that sorting results
by something other than relevance will prevent
ranking rules from your query pipelines and machine
learning re-ranking from applying to the page.

White Paper | Coveo Platform Implementation Guide

https://coveo.github.io/search-ui/components/fieldvalue.html
https://www.coveo.com/en

Going to Production — Checklist
Indexing

		 Did you index all the content
you need to display?

		 Did you only index content
shown in at least one
search page?

		 Are all the sources building/
rebuilding successfully?

		 Did you remove the header/
footer of your content, so only
the relevant content is indexed?

		 Did you adjust the schedules
of your pull sources to an
appropriate time frame?

		 Is your metadata consistent
for result display and facet use?

		 Did you index all the metadata
you need, for filtering, boosting,
and displaying results?

Permissions
		 If you have permissions, did

you ensure the right permissions
are on your items?

		 If you have permissions, did
you ensure the search token
contains all the permissions
of the querying user?

Search page
		 Are you tracking analytics

on your search pages?

		 Are you sending a search
hub (originLevel1) on your
analytics call?

		 Are your results displayed
differently depending on the
type of content it is?

		 Are you using Coveo for the
global search box?

		 Does your global search box
share the same search hub value
as the page it redirects to?

		 If you have multiple languages,
have you implemented the
appropriate culture files
to translate the UI in the
appropriate languages?

		 If you have multiple languages,
have you translated your
own strings (e.g., field values,
facet titles, result template
labels, etc.) in the appropriate
language?

Machine learning
and pipelines

		 Do you have a pipeline
architecture with conditions?

		 Did you create your
machine learning models
(ART and QS)?

		 Did you associate the machine
learning models with all
appropriate pipelines?

White Paper | Coveo Platform Implementation Guide

https://www.coveo.com/en

Learn more about Coveo
Coveo is the world’s leading cloud-based relevance platform.
The Coveo Relevance Cloud™ uses applied AI to deliver
relevant experiences in all digital interactions, from search
to recommendations to personalization.

The Relevance Company

https://www.coveo.com/en
https://www.youtube.com/user/CoveoInsights
https://github.com/coveo
https://www.instagram.com/coveolife/
https://www.linkedin.com/company/coveo/
https://www.facebook.com/coveolife
https://twitter.com/coveo
https://www.coveo.com/en/contact

	page précédente:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:

	page suivante:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:

	Check Box 1: Off
	Check Box 2: Off
	Check Box 3: Off
	Check Box 4: Off
	Check Box 5: Off
	Check Box 6: Off
	Check Box 7: Off
	Check Box 8: Off
	Check Box 9: Off
	Check Box 10: Off
	Check Box 11: Off
	Check Box 12: Off
	Check Box 13: Off
	Check Box 14: Off
	Check Box 15: Off
	Check Box 16: Off
	Check Box 17: Off
	Check Box 18: Off
	Check Box 19: Off
	Button 5:
	Page 31:

	Previous 3:
	Page 31:

